If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+27x+18=0
a = 1; b = 27; c = +18;
Δ = b2-4ac
Δ = 272-4·1·18
Δ = 657
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{657}=\sqrt{9*73}=\sqrt{9}*\sqrt{73}=3\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-3\sqrt{73}}{2*1}=\frac{-27-3\sqrt{73}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+3\sqrt{73}}{2*1}=\frac{-27+3\sqrt{73}}{2} $
| 16t^2=1437 | | 9x-33+2x+7=62 | | 15/100=2x | | -2x-32=x-40 | | 1/3x(4x-5)=0 | | 2x+11=3x+35 | | -15y+7+17y=2y+70= | | 7x +7= 8x −4 | | 8x-12+3x+27=180 | | -3x^2-30x+12=0 | | 3x+10=5x-82 | | 36=w/5 | | h/13=3.75 | | x+(7x+2)+(3x-9)=180 | | b+2.3=18.09 | | m2=m6 | | Y=(7/8)^t | | 4(4x-1.3)=2x-5.2 | | z-14=42 | | 9x-33=2x+7 | | 6(x+4=66 | | 6(x+4=66 | | r-1.23=5.29 | | 5x+2x-8=9 | | 64x-40=5x-35 | | |2x-9|/3=12 | | k=66=98 | | 9+0.25x=1.25x | | -0.5x+8=2.5 | | 1/3•8x+5x=46 | | 6^x-2=32 | | -18+2r=6-2r |